TRANSFORMATION OF A LINEAR DIFFERENTIAL
EQUATION WITH POLYNOMIAL COEFFICIENTS
INTO AN INTEGRAL EQUATION WITH
THE AID OF OPERATIONAL CALCULUS
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Suppose the following homogeneous linear equation is given:
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where, for the sake of simplicity, po(t). pl(t). +sss pp(t) denote poly-
nomials of order not higher than the second.

According to the [complex ] differentiation theorem of the transform
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and after operational transformation, equation (1) corresponds to the
following differential equation of second order:
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where P(p), Q(p), R(p) are polynomials of order < n, and S(p) is a poly-
nomial containing the initial values.

Let, for instance, R(p) be a polynomial of order not less than the
orders of polynomials P(p) and Q(p); then from (2) it follows that
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The terms of the relation (3) will be inverted separately. Assume,
for the sake of simplicity, that the roots of R(p) are simple. Then
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into simple fractions:
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and, by the convolution theorem,
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Using (4), (5) - (8) yields
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This is an integral equation of the Volterra type of the second kind

with a degenerate kernel, containing exponential terms.

Everything said here can be easily extended to the case where R(p)
has multiple roots.

Example. The equation of Laguerre
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is, after transformation
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From this it follows that
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and this means that the integral equation is
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