
TRANSFORMATION OF A LINEAR DIFFERENTIAL 
EQUATION WITE POLYNOMIAL COEFFICIENTS 

INTO AN INTEGRAL EQUATION WITH 
TEE AID OF OPERATIONAL CALCULUS 

(PEB~KII~D 0~ LINEINOQO DIFPEBENTSIAL'NO~O UBAVNENIIA 

S POLINOHIAL'NYNI K KOEFFITSIENTAII K INTBBBAL'NOIY 

UBAVNENIIU PBI PONOSBCUI OPEBATSIONNOBO ISCBISLENIIA) 

PNY Vo1.22, No.4, 1958, pp.553-554 

V.V. KARAYYSHKIN 

(Yoscor) 

(Received II December 1957) 

Suppose the following homogeneous linear equation is given: 

where, for the sake of simplicity, pa(f). pi(t). . . . , p,,(t) denote poly- 

nomials of order not higher than the second. 

According to the [complex I differentiation theorem of the transform 
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and after operational transformation, equation (1) corresponds to the 

following differential equation of second order: 

where P(p), Q(p), R(p) are polynomials of order < n, and S(p) is a POSY- 

nomial containing the initial values. 

Let, for instance, R(p) be a polynomial of order not less than the 

orders of polynomials P(p) and Q(p); then from (2) it follows that 
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The terms of the relation (3) will be inverted separately. Assume, 

for the sake of simplicity, that the roots of R(p) are simple. Then 
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Expand Q(p) - into simple fractions: 
R(p) 

Then 
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and, by the convolution theorem, 
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then 
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Using (4), (5) - (8) yields 
t t 
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This is an integral equation of the Volterra tYBe of the second kind 

with a degenerate kernel, containing exponential terms. 

Everything said here can be easily extended to the case where R(p) 

has multiple roots. 

Example. The equation of Laguerre 

tji+(i--q;+ny=O 
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is. after transformation 

(P - u”) P $- [y+] -PY(p)+(n+1)Y(p)=O 

From this it follows that 

But 
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and this means that the integral equation is 

or 
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